

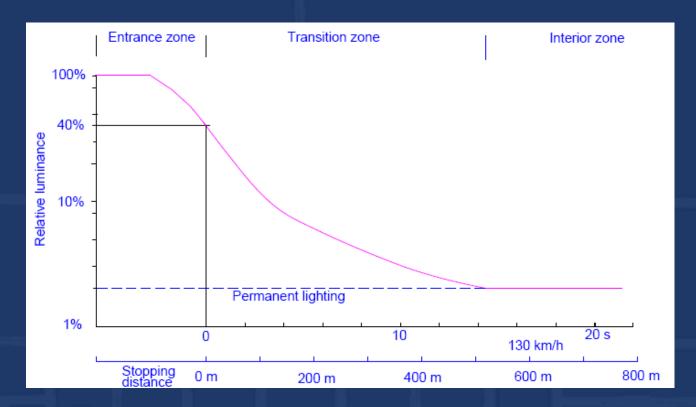
Consulting – Engineering – Supply

Gulf Traffic Award Winner 2011

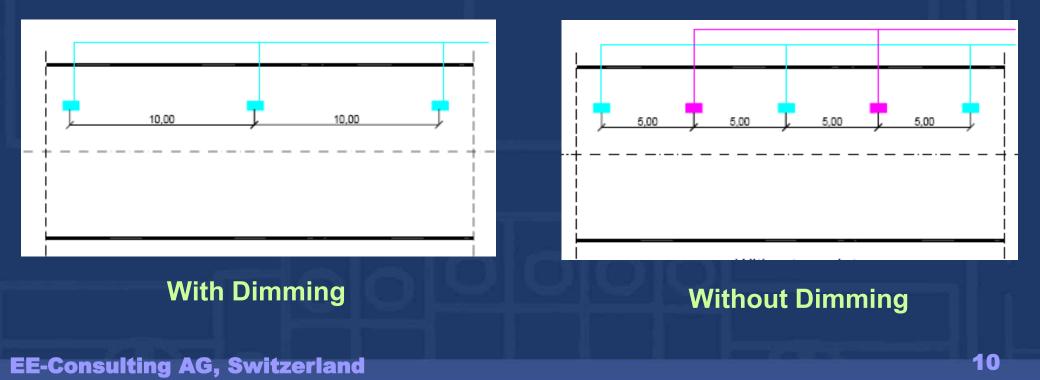
Reverberi Enetec Lighting Management

The Know How

- Tunnel Lighting Control
- Tunnel Ventilation and Control
- Guidance Lighting
- Emergency Exit Marking
- Structured Cabling Systems
- Design
- Servicing


We have found the most efficient way how to manage tunnel lighting!

Tunnel lighting is controlled in a stepless manner (dimmed) to optimize operational cost (energy and lamp life) and continiously monitored to increase saftey. Just like the outside light!


According to CIE 88 / 2004

EE-Consulting AG, Switzerland

Up to 35% of energy can be saved!
The number of luminaires can be reduced!
Larger lamps with better efficiency can be used.

Dimming Control

without dimming							
P lamp	150 W						
P ballast	20 W						
P total	340 W						
Flux tot.	34000 lm	100 lm/W					
Flux 50%	17000 lm	100 lm/W					
Points	2 x SHP 150V	V					

with dimming							
P lamp	250 W						
P ballast	25 W						
P total	275 W						
Flux tot.	33000 lm	120 lm/W					
Flux 50%	16500 lm	95 Im/W					
Points 1 x HPS 250W							

1. Lower Maintenance and Operational Cost

Due to the dimming, stabilisation and soft starting, the lamps last 2 - 3 times longer.

2. Energy Savings 25-50%

The tunnel lighting is adjusted to the outside light and the supply is stabilised. Excess light is turned into savings.

3. More Safety and Security

The proper functioning of the lighting is monitored and problems are reported instantly. Actions can be taken .

4. Short Return of Investment

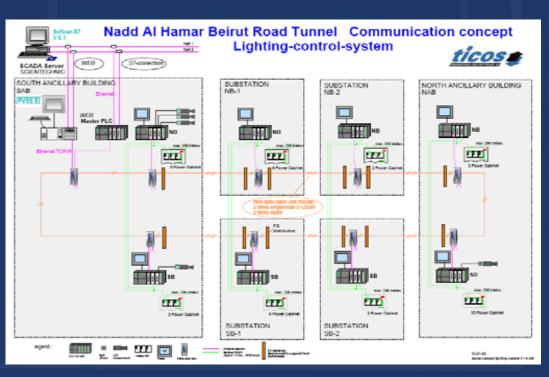
Due to the savings systems have an ROI of <5 years.

How to Measure Light!

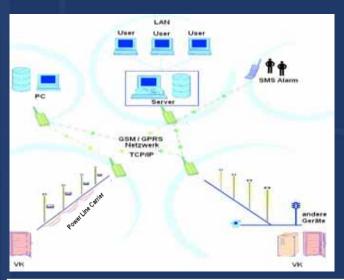
Years of research and decades of experience combined with some of the brightest lighting scientists yielded great results. Developed with a leading institute for lighting sciences: The new Veil Luminance Meter of Reverberi.

Interfaccia SDL ile Impostazioni Porta DDM C COM1 C COM2 G COM3 CON4 CON5 C CONS C CON7 C CONS Connesso 115200 baud Lum, Atmosfera 27 Lum, Equivalenti 212 Luminanza Velo 310 Download Sonda I V V1

EE-Consulting AG, Switzerland


According to CIE 88 / 2004

Ticos, Switzerland


Tunnel Integration Specialists Hundreds of installations incl. longest road tunnel (Gottard) and two longest tunnels in ME

Reverberi Italy

Lighting Control and Management Specialists

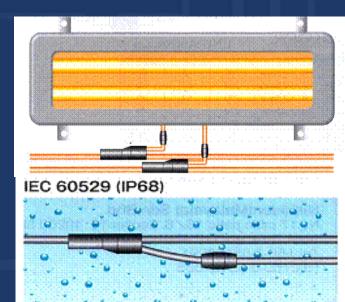
No 1 in Italy

Reverberi Enetec Lighting Management

New challenges require new solutions!

Gifas: over 1000 Installations!!!

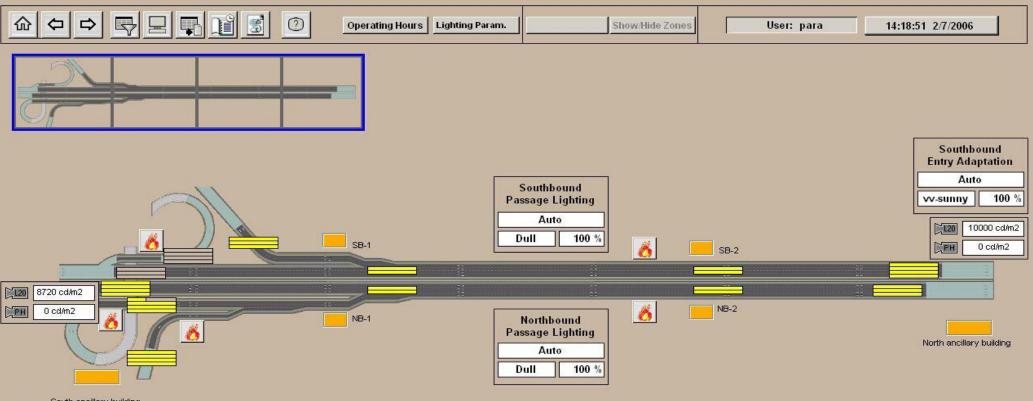
Guidance Systems


RAN

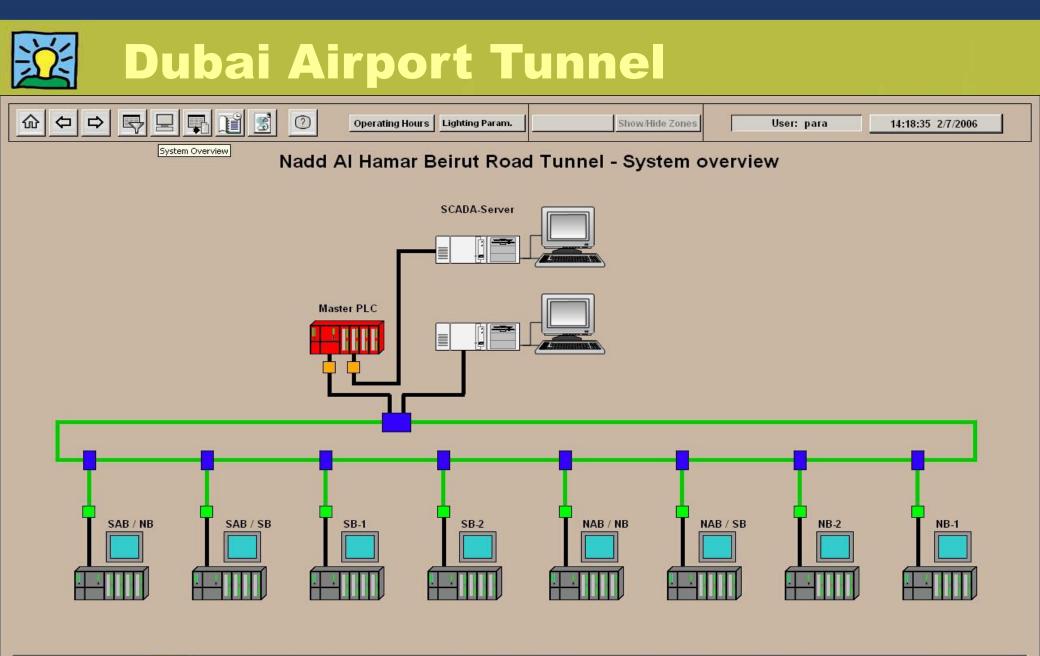
ble With Fire Proof Connetor

Modular Cabling Systems

Pre-fabricated IP 68, fire resistent 100% tested Huge time saving for installation Hallogen free, low smoke



Gulf Traffic Award Winner 2011

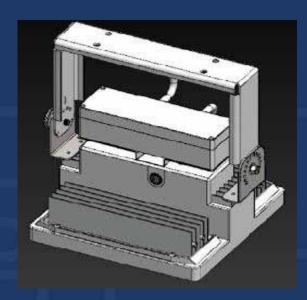

Dubai Airport Tunnel

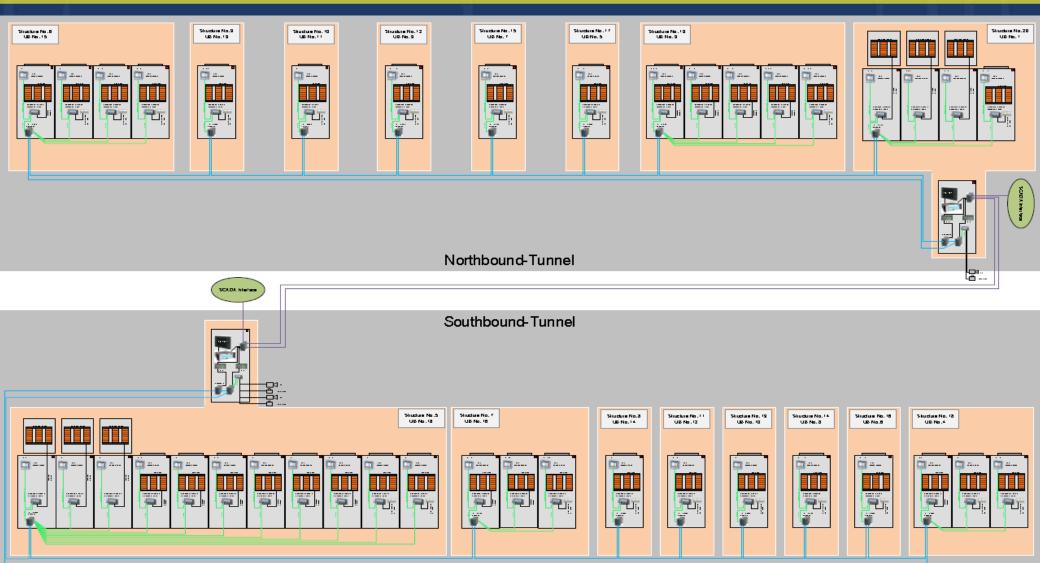
South ancillary building

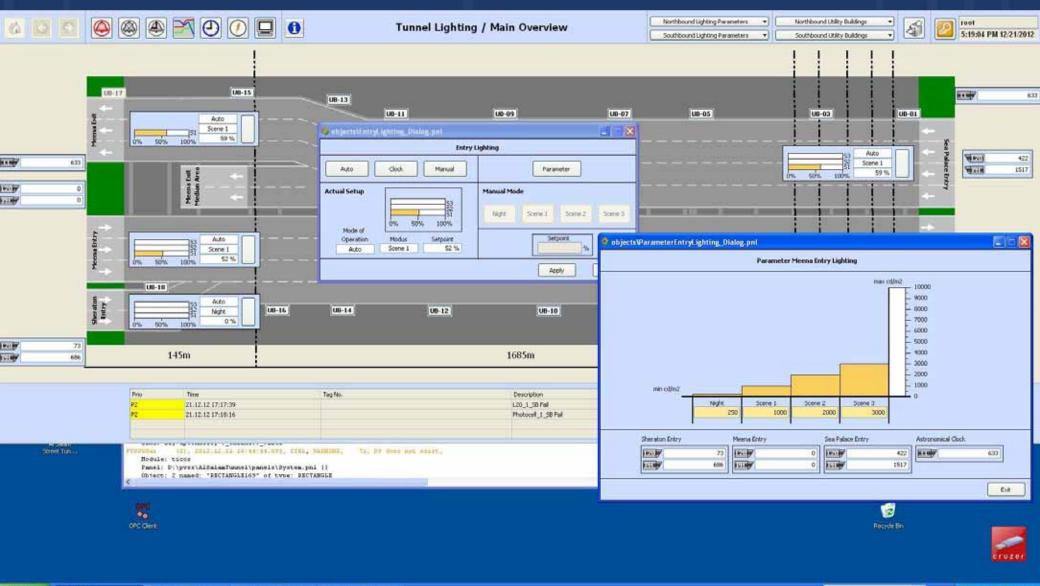
Northbound Entry Adaptation Auto VV-sunny 100 %

11/12/05 22:15:03	40	+NAHBRT/NAB=LDB-TRSNB:SBT.DB117.DBW2100.rmj MT54-48 Southbound Wall 2-R NG Device 103 Status Communication timeout	ON 🔺
11/12/05 22:15:03	40	+NAHBRT/NAB=LDB-TRSNB:SBT.DB117.DBW2120.rmj MT54-48 Southbound Wall 2-Y NG Device 104 Status Communication timeout	ON
11/12/05 22:15:03	40	+NAHBRT/NAB=LDB-TRSNB:SBT.DB117.DBW2140.rm1 MT54-48 Southbound Wall 2-B NG Device 105 Status Communication timeout	ON
11/13/05 13:00:38	40	+NAHBRT/NAB=LDB-TRSNB:SBT.DB117.DBW2160.rmJ MT54-48 All the four lines-R NG Device 106 Status Communication timeout	ON 📮

11/12/05 22:15:03	40	+NAHBRT/NAB=LDB-TRSNB:SBT.DB117.DBW2100.rm] MT54-48 Southbound Wall 2-R NG Device 103 Status Communication timeout	ON
11/12/05 22:15:03	40	+NAHBRT/NAB=LDB-TRSNB:SBT.DB117.DBW2120.rm1 MT54-48 Southbound Wall 2-Y NG Device 104 Status Communication timeout	ON
11/12/05 22:15:03	40	+NAHBRT/NAB=LDB-TRSNB:SBT.DB117.DBW2140.rml MT54-48 Southbound Wall 2-B NG Device 105 Status Communication timeout	ON
11/13/05 13:00:38	40	+NAHBRT/NAB=LDB-TRSNB:SBT.DB117.DBW2160.rm1 MT54-48 All the four lines-R NG Device 106 Status Communication timeout	ON


🔀 Airport Tunnel Tunnel Dubai


Salam Street Tunnel is the longest tunnel in the Middle East. With over 5'000 LED luminaires it is one of the biggest LED tunnel applications in the world. All of the 5'000 LED lights and the 2'000 sodium lights are monitored and dimmed.



Salam Street Tunnel

SST L₂₀ Threshold Settings

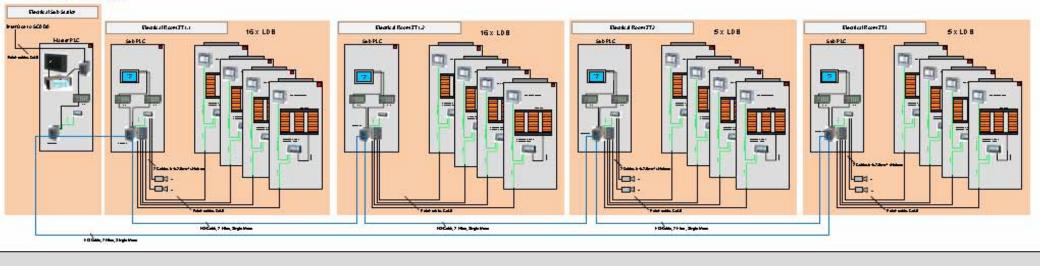
2

SST TLCS Main Screen

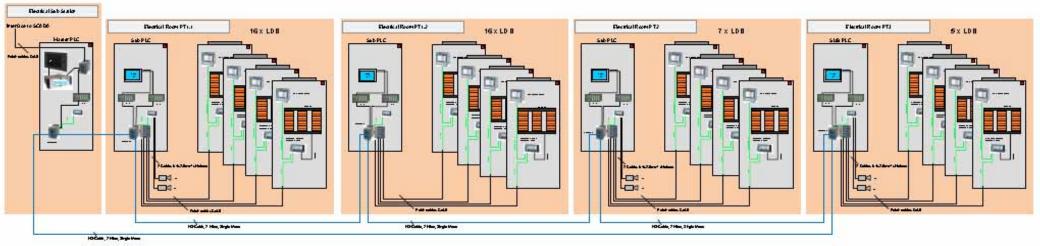
Property Editor Project View

SST Electrical Data per LDB

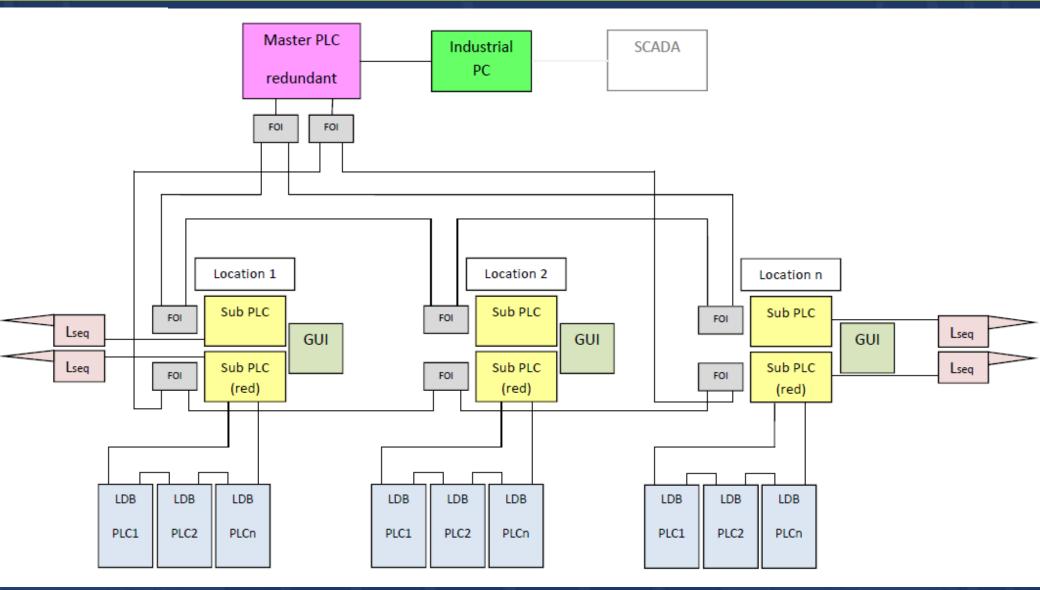
		••••	0	Tunnel Lighti	ng / SB Utilit	y Building 18	1	nd Lighting Parameters •	Northbound Utility Build Southbound Utility Build	<u> </u>	1001 4:16:59 PM 12/19/2012
LDB-PR-D9 / HPS	Foult	LDB-PR-D10 / HPS	Fault	LDB-PR-D11 / HPS	Foult	LDD-PR-D12 / HPS	findt 🔜	LDD-PR-D13 / HPS	reuk. 📃	LDB-PR-D14 / HPS	Fault 📕
Actual Mode Divising	Switch Mode	Actual Mode Denwing	Switch Mode	Actual Mode Off	Switch Mode	Actual Mode Denming	Switch Mode	Actual Mode Off	Switch Mode	Actual Mode Off	Seitch Mode
237.4 ¥ (0)11-N 237.4 ¥ (0)12-N 230.3 ¥ (0)13-N	410.8V [U]11-12 412.1V [U]12-13 412.0V [U]13-11 220.01 [U]04	237.4 V [U]11-N 237.5 V [U]12-N 230.6 V [U]13-N	411.1 V [V]1.142 412.4 V [V]1.243 412.2 V [V]1.341 181.24 [V]002	237.8 V [U]1.1-4 237.7 V [U]1.2-4 230.7 V [U]1.3 N	411.5 V [U]114.2 412.7 V [U]124.3 412.7 V [U]134.1 181.2 V [U]04	237.7 V [U] L144 237.4 V [U] L249 238.4 V [U] L349	411.2 V [U]1.142 412.2 V [U]1.243 412.4 V [U]1.341 220.01 [U] Ozt	237.5 V [U] L1-4 237.6 V [U] L2-4 238.5 V [U] L3-4	411.2 V [U]1.143 412.4 V [U]1.243 412.9 V [U]1.341 983.10 [U] Out	237.7 ¥ [U]L1-N 237.6 ¥ [U]L2-N 230.4 ¥ [U]L3-N	411.4 V [U]1.142 412.3 V [U]1243 412.4 V [U]1341 189.10 [U]04
70.0 A (1)1.1 65.3 A (1)1.2 64.5 A (1)1.5 44.5 A (1)1.5	151.6 A [1]11-max 142.4 A [1]12-max 140.3 A [1]13-max	46.1 A (1)1.1 45.3 A (1)1.2 42.4 A (1)1.3 27.6 A (1)4	147.9 A [1]L1-max 143.9 A [1]L2-max 137.0 A [1]L3-max	0.0A ([]11 0.4A []]12 0.2A []]13 0.5A []]N	148.2 A [1] L1-max 140.4 A [1] L2-max 140.4 A [1] L2-max	9.7 A [[]]LI 10.1 A []]L2 9.5 A []]L3 5.0 A []]N	23.1 A [[]1.1 mis 23.1 A []12-max 23.3 A []12-max	0.2A [1]11 0.2A [1]12 0.1A [1]13 0.1A [1]13 0.2A [1]N	23.1 A [1]11-mex 22.9 A [1]12-mex 23.4 A [1]12-mex	0.2A [1]11 0.2A [1]12 0.1A [1]13 0.2A [1]N	23.0 A [1]11 mor 23.0 A [1]12-max 23.3 A [1]13-max
45.7 kw (P) Active Pwe. 0.8 kwar (Q) Reactive Pwe. 47.7 kwa (5) Apparent Pwe.	0,950 Cor Ph ind, C/I 50.0 Hz Prequency	-30.5 kw [P] Active Pve. -1.5 kvar [Q] Reactive Pve. 31.6 kva [5] Apparent Pve.	0.959 Cos Phy ind. C/I S0.0 Hz Prequency	-0.1 kW [P] Active Ive. -0.1 kvar [Q] Reactive Ive. 0.1 kvar [5] Apparent Ive.	0.411 CorPh nd Cfl 50.010 Prequency	-6.8 kw [P] Active Pwe. -0.5 kwar [Q] Reactive Pwe. 7.0 kwA [5] Apparent Pwe.	0.960 Cos Phi ind. C/S S0.0 Hz Prequency	-0.1 kw [P] Adive Pve. -0.0 lover [Q] Reactive Pve. 0.1 kv4 [5] Apparent Pve.	0.597 Cos Phi ind, C/I 50,0 Hz Prequency	0.1 kw [P] Active Pve 0.0 kwar [Q] Reactive Pse 0.1 kvA [5] Apparent Pve	0.594 Cos PN Ind. C/I 50.0 Hz Prequency
LDB-PR-D15 / HPS	Fo.k	LDB-PR-D16 / HPS	fack 📕	LD8-PR-D17 / HPS	Foult	LDB-PR-DN10 / LED	Fask 📕	LDB-PR-DN11 / LED	Fault 📕		
Actual Mode Dimning	Seitch Mode	Actual Mode Off	Switch Mode	Actual Mode Off	Switch Node	Actual Mode Bypass	Switch Mode	Actual Hode Bypass	Switch Mode		
237.6 V 237.5 V 238.6 V U)1.3-N	411.0V [U]1142 412.3V [U]124.3 412.5V [U]124.1 103.10 [U] 0/4	237.7 V (U)1.1-N 237.6 V (U)1.2-N 238.6 V (U)1.3-N	411.3 V [V]L1-L2 412.5 V [V]L2-L3 412.6 V [V]L3-L3 183.10 [V] Out	237.7 ¥ [U]LL-N 237.6 ¥ [U]L2-N 238.6 ¥ [U]L3-N	411.3 ¥ [U]1.142 412.5 ¥ [U]1.243 412.6 ¥ [U]1.343 103.10 [U] Oxt	230.9 V (U)11-N 230.9 V (U)12-N 231.1 V (U)13-N	400.0 V [U]L142 400.1 V [U]L243 400.1 V [U]L341 220.00 [U]Out	231.1 V 231.1 V 231.1 V 231.1 V UJL3-N	400.3 V [U]1142 400.2 V [U]1243 400.3 V [U]1343 220.00 [U] Out		
28.3 A [0]11 29.4 A [0]12 25.0 A [0]13 16.8 A [0]N	92.7 A [1] L1-max 93.1 A [1] L2-max 84.3 A [1] L3-max	0.2 A [1]11 0.2 A [1]12 0.2 A [1]13 0.2 A [1]13	110.3 A [1]L1-max 104.2 A [1]L2-max 90.5 A [1]L3-max	0.2A [I]L1 0.2A [I]L2 0.2A [I]L2 0.2A [I]L3 0.2A [I]N	108.8 A [1] L1-max 100.9 A [1] L2-max 100.7 A [1] L3-wax	15.1 A [7]11 14.9 A [7]12 15.2 A [7]13 7.8 A [7]N	33.2 A []]LI-max 33.6 A []]L2-max 32.9 A []]L3-max	11.3 A [J]L1 10.1 A [J]L2 10.8 A (J)L3 5.1 A [J]N	23.7 A [1] L1-max 24.4 A [1] L2-max 26.1 A [1] L3-max		
-19.0 kW [P] Active Pwr. 0.1 kwr [Q] Reactive Pwr. 19.7 km [5] Apparent Pwr.	0.967 Cos Phi ind. C/I \$0.0 Hz Frequency	-0.1 I/W [P] Active Pve. 0.0 I/ver [Q] Reactive Pve. 0.1 I/vA [S] Apparent Pve.	0.605 Cos Phi ind. C/I 50.0 Hz Frequency	0.11W [P] Active Per. 0.0 kvw [Q] Reactive Per. 0.11WA [5] Apparent Per.	0.604 Cos Pts Ind. Cfl 50.01tr Frequency	8.5 kW [P] Active Pve. 5.6 km/r 10.4 kVA [S] Apparent Pve.	0.815 Ind. 50.0Hz Frequency	6.1 kW [P] Active Pee. 4.0 km/ [9] Reactive Pen. 7.4 kVA [5] Apparent Pee.	0.019 Cos Phi ind. C/0 50.014t Frequency	Tot	al Powrer
	Pre P2 P2 P2 P2 P2	Twe 10.12,12.14:40:34 10.12,12.14:40:34 10.12,12.14:40:34 10.12,12.14:40:34 10.12,12.14:40:34	UB10-LDBP	RENII 4-MEDIACONVERTER RENII 5-MEDIACONVERTER ENII 6-MEDIACONVERTER ENII 7-MEDIACONVERTER	n n	escription bre Optic Converter bre Optic Converter bre Optic Converter ten Optic Converter			State normal normal normal normal	Vph-n INSTANTA	NTRON PAC3200



Lusail Express Way Proposal


PROJECT : Lusail Express Way, Tunnel Lighting Control Systems Communications Layout

Onaiza Tunnel



Pearl Tunnel

TLCS Block Diagram

References Tunnels

Abu Dhabi Salam Steeet Tunnel (5000 LED luminaires) Abu Dhabi Ras Al Akhdar Tunnel (LED + HPS) Aub Dhabi Baynunah Street Tunnel (LED + HPS) Abu Dhabi Central Market UP (first LED only tunnel) Dubai (RTA): Airport Tunnel + 16 Tunnels Ajman UAE, Al Hamidiya Interchange Tunnels Qatar, Lusail Express Way, 7 tunnels (design) Bahrain (4 Tunnels) Riyadh old Airport Tunnels, guidanc lighting system

References Public Lighting

2013 Shouth Shamkah PLMS 18'000 LED 2013 Saadiyat Island PLMS LED 2013 Ajman Al Hamidiya Interchange PLMS LED 2012 Khalifa Port PLMS LED **2008** Dubai International City (Nakheel) **2007** Dubai Jumeirah Village (Nakheel) **2007** Maritime City (Nahkheel) 2004 Dubai PLMS **Riyadh, Dammam, Jubail Muscat Public Lighting**

THANK YOU